Turing pattern formation with fractional diffusion and fractional reactions
نویسندگان
چکیده
We have investigated Turing pattern formation through linear stability analysis and numerical simulations in a two-species reaction–diffusion system in which a fractional order temporal derivative operates on both species, and on both the diffusion term and the reaction term. The order of the fractional derivative affects the time onset of patterning in this model system but it does not affect critical parameters for the onset of Turing instabilities and it does not affect the final spatial pattern. These results contrast with earlier studies of Turing pattern formation in fractional reaction–diffusion systems with a fractional order temporal derivative on the diffusion term but not the reaction term. In addition to elucidating differences between these two model systems, our studies provide further evidence that Turing linear instability analysis is an excellent predictor of both the onset of and the nature of pattern formation in fractional nonlinear reaction–diffusion equations.
منابع مشابه
Applied Mathematics Report Amr01/7 Existence of Turing Instabilities in a Two-species Fractional Reaction-diffusion System
We introduce a two-species fractional reaction-diffusion system to model activatorinhibitor dynamics with anomalous diffusion such as occurs in spatially inhomogeneous media. Conditions are derived for Turing instability induced pattern formation in these fractional activatorinhibitor systems whereby the homogeneous steady state solution is stable in the absence of diffusion, but becomes unstab...
متن کاملExistence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System
We introduce a two-species fractional reaction-diffusion system to model activatorinhibitor dynamics with anomalous diffusion such as occurs in spatially inhomogeneous media. Conditions are derived for Turing-instability induced pattern formation in these fractional activatorinhibitor systems whereby the homogeneous steady state solution is stable in the absence of diffusion but becomes unstabl...
متن کاملTuring pattern formation in fractional activator-inhibitor systems.
Activator-inhibitor systems of reaction-diffusion equations have been used to describe pattern formation in numerous applications in biology, chemistry, and physics. The rate of diffusion in these applications is manifest in the single parameter of the diffusion constant, and stationary Turing patterns occur above a critical value of d representing the ratio of the diffusion constants of the in...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کامل